
Page 1 of 64

SyncStudio by HandApps Software

A Complete Mobile Database Synchronization Solution

User Guide

Release 4.x, Dec 2024

Copyright © 2024 HandApps Software – All rights reserved

Page 2 of 64

Edition Notes - Release 4.x, Dec 2024

Trademarks SyncStudio ® is a registered trademark of HandApps Software (HandApps). The

SyncStudio ® logo in its entirety and all other trademarks on this manual pertaining to services,

products, or marketing statements are owned or licensed by HandApps. Any other product

names, logos, brands, company names, and other trademarks featured or referred to within this

document are the property of their respective trademark holders.

Copyright Notice HandApps Software owns the content of this manual in its entirety, including

but not limited to pictures, logos, trademarks, and resources.

© Copyright 2024 HandApps Software. All rights reserved. Electronically published by

HandApps Software in the United States of America.

Manual Usage HandApps authorizes its customers to download and print this manual for

professional information purposes only. HandApps expressly prohibits the usage, copy,

storage, distribution, modification, or printing of this manual or its content for any other

purpose without its written consent.

Document Printing For best results, print this document in color, on letter size paper (8.5 x 11

inches), double sided. If using A4 paper (210 x 297 mm), configure your printer to scale the

content accordingly.

Disclaimer HandApps Software believes that the information contained in this manual is

accurate in all respects. However, HandApps assumes no responsibility for any error or

omissions in this document. HandApps reserves the right to revise this document and to make

changes from time to time in the content hereof without obligation of HandApps to notify any

person or company of such revision or changes. This does not constitute in any way a

commitment by HandApps to make such changes. HandApps may issue a revision of this

manual or a new edition of it to incorporate such changes.

Document Revision The SyncStudio User Manual, Rev. 4.x, supersedes all previous versions of

this manual. Discard any older versions and replace them with this version.

Page 3 of 64

Table of Contents

About SyncStudio ..5

Licensing .. 10

Database Sync Configuration ... 13

Database Provisioning ... 17

Foreign Keys .. 17

Use Tracking Triggers .. 18

Process Timeout (seconds) ... 18

The Database Provisioning Process ... 19

Automatic Schema Synchronization .. 20

Avoiding changes that break synchronization ... 21

Stranded Client Records .. 22

Preventing Schema Synchronization Errors ... 23

Some Notes about SQLite .. 25

General Design Considerations ... 27

Code Generation .. 28

Sync Server Deployment .. 30

User Maintenance .. 32

Reports ... 34

Filtering Data .. 36

Simple Filtering .. 36

Advanced Filtering... 37

The Standard SyncStudio Android Client .. 39

The Device Log ... 45

Sample Code – SyncStudio Android Open Source synchronization apps 48

SyncStudio Sync Client (Basic4Android Project) ... 48

SyncStudio Sync Client (JAVA/Eclipse Project) .. 48

Class Library API Reference – Basic4Android and Java ... 49

The Basic4Android .JAR API .. 49

Synchronization Example .. 52

Handling Synchronization Events ... 53

Page 4 of 64

The Profile Database ... 54

Getting at the Database Location ... 55

The JAVA .JAR API .. 56

Using the Sync Object .. 58

Creating Profile Database ... 61

Page 5 of 64

About SyncStudio

SyncStudio is a powerful tool for mobile app developers needing to incorporate offline data with

sync functionality into their solutions. With SyncStudio developers can create a complete mobile

database synchronization solution in minutes rather than weeks or months.

Built atop a significantly enhanced customized version of the Microsoft Sync Framework
TM

SyncStudio leverages and expands this reliable SDK with unique patented technology and a

user-friendly wizard style interface. With SyncStudio we have taken all the complication and

tediousness out of the Microsoft Sync Framework and totally insulate the developer from having

to learn anything about it. Sync configuration, database provisioning, automatic code

generation, compilation, IIS Deployment, user management and more is all taken care of. Our

users don’t even need to know C# or how to use Visual Studio.

Completing the solution, we provide our universal sync client class libraries, and the sample

code developers need to get their apps synchronizing databases fast.

Currently there are SyncStudio universal sync client class libraries for Android Java,

Basic4Android, Windows Forms, and Xamain Android/iOS. Using these class libraries in your

application allows you to synchronize data between SQLite, SQL LocalDB, SQL Express and

Microsoft SQL Server.

True Data Synchronization

SyncStudio is a full bi-directional synchronization. Unlike simple data replication or custom

created REST web services, SyncStudio only exchanges new and altered records between the

client and the server. This means both databases are maintained in a synchronized state with

only the minimum needed bytes flowing back and forth. SyncStudio renders custom or home-

built sync and custom data transfer code completely unnecessary. Change tracking is handled

automatically on the server side and at the client the developer’s application has full control to

flag records that have been changed, created or deleted so that SyncStudio knows what to do.

“Auto-Magic” Client Database

The first time a SyncStudio empowered app synchronizes it will download the database schema

from the server and create the client-side database file automatically. This local DB file will be

complete with all the tables, fields and indexes that were defined at the server. Any server-side

field types that are not supported in SQLite are automatically translated to the most compatible

equivalent.

During subsequent synchronizations SyncStudio will always validate the local database schema

against the server. If any schema changes are detected they are automatically applied.

DB Schema Synchronization

Database structures are not static once created. They change overtime as new features are

added to a solution or due to customer requested modifications. Pushing these schema

changes out to 10’s or 1000’s of mobile clients has always been a nightmare; until now.

SyncStudio delivers Database Schema synchronization out of the box. Any changes made to the

database structures on the server will be propagated to all the mobile clients the next time they

synchronize. Best of all, these schema changes do not break the synchronization or force the

Page 6 of 64

user to lose un-synced data. Tables and fields can be added as needed to the App and these

changes seamlessly flow to the devices when they connect. This feature alone will substantially

lower the maintenance and upgrade effort required to support a mobile database application.

Large Databases Live Here

SyncStudio was built for mobile database synchronization. It fully understands the physical

memory constraints of mobile environments and how to deal with them. By properly managing

memory usage SyncStudio can easily sync large databases with tens or even hundreds of

thousands of records.

Transaction Commit/Rollback

SyncStudio has full transactional support at the Sync session level (across multiple transmission

batches). All data changes will be applied under a single upload or download transaction,

which will either succeed or fail.

Some synchronization solutions ONLY implement commit/roll-back at the batch level.

Consequently, any errors during a multi-batch synchronization could leave the databases in a

corrupt state. This won’t happen with SyncStudio.

Class Libraries (JAR & .DLL)

The SyncStudio solution includes a device side universal synchronization client (USC) in the

form of platform specific API class libraries. Any developer that wants to build database

synchronization directly into their application would add these class libraries to their solution.

Once incorporated our USC handles all aspects of the synchronization and frees the developer

to focus on building his app.

Stand-Alone Sync Client

SyncStudio also includes free platform specific sample apps. We provide source code to these

apps so the developer could use it as a starting point for adding sync features into his solution.

SyncStudio SMC

The SyncStudio SMC (Sync Management Console) is the Windows application where the

developer creates the synchronization project. Here is where they specify the tables and fields

to sync with SQLite on the devices. They can set sync direction, conflict resolution, filters and

user access privileges. The SMC is an extremely easy to use (wizard like) tool that guides the

developer step-by-step through the process. Its features include automated database

provisioning, automated code generation and compilation of custom sync component library

and automated deployment to IIS.

Sync Schema Configuration

The SyncStudio SMC allows the developer to specifically select which tables and fields he wants

to sync with the device. He also has full control (without programming) to define the direction

in which data will flow and how conflicts will be handled. The ability to enable data filtering on

a table-by-table basis is also available.

Page 7 of 64

Data Filtering

SyncStudio supports both simple and complex data filtering. Developers and system admins

can control which records are synced to each device on a table-by-table basis.

Database Provisioning

The SyncStudio SMC automatically handles the provisioning (and de-provisioning) of the server-

side SQL database, making all the changes necessary for synchronization to work. The

developer simply chooses the tables and fields he wants to sync with SQLite/SQL LocalDB and

we take care of the rest. All the needed tracking tables, triggers and other objects are added to

the selected SQL DB automatically.

Code Generation

The SyncStudio SMC will automatically generate and compile the .NET code for a custom WPF

Synchronization Web Service. The result is a ready to go .NET .DLL that is specific to the

selections of tables and fields made by the developer. Once this uniquely created .DLL is

deployed to IIS everything is ready to start synchronizing data. With the SyncStudio SMC

developers have absolutely ZERO custom coding on the server-side.

Automated IIS Deployment

The SyncStudio SMC will automatically deploy the sync project to IIS. The developer simply

chooses the folder were the various files will be copied to and presses one button. IIS is then

configured with the appropriate virtual folder, application pool, etc. to enable synchronization.

Reporting and Logging

SyncStudio has a full synchronization logging feature, both at the client and the server. Using

the Reporting features in the SMC the developer or system admin can review sync stats and

other info.

Page 8 of 64

SyncStudio Projects

To get started with SyncStudio you first create a new SyncStudio project. A SyncStudio Project

defines the tables, fields and indexes that are to be synchronized between your Database Server

and your mobile clients.

To create a new SyncStudio Project select File → New Project in the main menu and enter a

Project Name. Project Names cannot have any spaces—use the underscore character instead of

a space—and can only contain the characters a-z, A-Z, 0-9 plus the underscore character (_).

SyncStudio Projects are created in the SyncStudio Projects folder, which will be located in

C:\Users\[YOUR USER]\SyncStudioProjects directory of the target drive. Each Project has its own

sub-directory, with the name of the directory being the same as the name of the project.

Note: You should never have two SyncStudio Projects target the same database—they will

interfere with each other. You can have as many projects as you want (LICENSE PERMITTING)

targeting the same database server, though, so long as each project targets a different

database.

Page 9 of 64

Once you create your new Project you need to connect to the Database Server. To do this please

select the Database Server, enter the Database Name and select either Windows Authentication

or SQL Server Authentication and click on the “Connect” button.

If you select SQL Server Authentication you will need the User ID and Password of your SQL

Server user account. Regardless of which authentication method you select the user account

needs to be able to modify the Database Schema, as we will need to add a number of tables,

triggers and stored procedures to the database structures.

WARNING: PLEASE DO NOT ATTEMPT TO USE AN SQL DATABASE THAT HAS PREVIOUSLY BEEN

PROVISIONED OR USED WITH STANDARD MICROSOFT SYNC FRAMEWORK. ONLY USE DATABASES

WITH SYNCSTUDIO THAT ARE CLEAR OF THIRD PARTY SYNC RELATED OBJECTS OR ARE NEW

AND HAVE NOT ALREADY BEEN ALTERED BY OTHER SYNCHRONIZATION TOOLS. IT IS LIKELY

THAT SYNCSTUDIO PROVISIONING WILL FAIL IF ATTEMPTED WITH DB ALREADY PROVISIONED BY

SOME OTHER TOOL.

Page 10 of 64

Licensing

When SyncStudio is installed on a machine for the first time it will operate as an unregistered

evaluation. In this mode, synchronization will be limited to 3 mobile users for 10 days.

For SyncStudio to automatically license itself as an eval it needs to be able to access our

Licensing server.

Click “Yes” to allow SyncStudio to attempt to access our license server. If connection fails or

you click “No” then you will need to request an evaluation license via the Licensing Screen.

To access the license screen, click “Help” and then “Licensing”

Page 11 of 64

To receive your SyncStudio License file please complete the form in the center of the screen and

click “Request License”.

Note about “Your Email” -

If you have purchased a license of SyncStudio please use the same email address you used with

the purchase. Otherwise, we will not be able to match up the request to a purchase and won’t

be able to send a license. Please contact us at sales@handapps.com for prices and purchase

options.

Note about “Purchase Conf. # -

If you have already purchased your license of SyncStudio then you will have received an email

confirmation. Depending on whether you purchased at our website or from a partner the

format of the email might be different. Find the Confirmation number or invoice number and

enter it in this field. If you can’t find it, no worries, we’ll figure it out using your email address.

Note about the License File –

The SyncStudio license file is generated on a machine-by-machine basis. It is specific to the

machine for which it is created and will not work on any other machine. Please only perform

the “Request License” from the machine which will be used for synchronization with the devices.

In other words, the machine / server that will be running Internet Information Server (IIS) and

hosting the SyncStudio sync web services.

Page 12 of 64

If in the future, you need to change the machine that is hosting the sync then you will need to

request a different license file, and the current license will be disabled. SyncStudio licenses are

created specific to:

- The machine

- The number of users

- The SQL Server

- The number of SQL databases being synced within the same server

- For a fixed time period.

It is a requirement that the machine hosting the sync services have an Internet connection so

that SyncStudio can perform license validation.

Page 13 of 64

Database Sync Configuration

SyncStudio has allows you to select which tables and fields will be synchronized. This

information is saved into your Sync Project file. When you select the Database Articles tab on

the left-side menu you will see a list of the tables in the database. Select which tables need to

be synced by checking them off, as shown in the figure.

By default, when you select a table for the first time only the primary key fields will be selected.

You then use the right-hand panel to select additional fields or Check All.

When you try to leave this section of SyncStudio you will be prompted to save your changes.

PLEASE NOTE

SyncStudio requires you add the field SS_rowguid to any table that you intend to sync with the client application. The following SQL script can be used

to automatically create the ALTER command for each table in your DB.

SELECT 'ALTER TABLE ' + T.name + ' ADD SS_rowguid UNIQUEIDENTIFIER DEFAULT newid() NOT null' FROM sys.tables AS T where t.name not like

'SyncStudio%' and t.name not like '%_Tracking' and t.name not like 'scope%' and t.name not like 'schema_info'

Page 14 of 64

Important Notes:

1) You cannot synchronize a table that does not have a primary key. Tables that do not

have a primary key will be shown highlighted in red in the SyncStudio and you will not

be able to select them for synchronization.

Please note that having a unique index or a unique constraint is not the same thing as

having a primary key—if you do not have a primary key the sync will fail, regardless of

whether you have unique indexes or constraints or not.

2) You do not have to synchronize all the fields in a table, but you must synchronize all the

fields that make up the primary key. Failure to follow this rule will cause the sync to fail.

The same thing goes for any fields that are part of any Index that is being synchronized:

you have to synchronize every field that is part of an index that is being synchronized,

otherwise the client will not be able to create and maintain the index and the sync will

fail.

3) Please keep in mind that fields that are not selected for synchronization will not be

present in the client-side table. The client-side version of the tables will have only the

fields that you select for synchronization in SyncStudio SMC. Your client-side application

needs to know which fields are present in the client-side version of your database.

4) Fields that are not selected for synchronization should always either allow null values or

provide a default value for the field or the sync will fail. The reason is that whenever a

new record is created at the client and uploaded to the server the client will not be

providing values for fields that are not being synced. If you do not allow nulls and do

not provide a default value for the field this will trigger a server-side error and abort the

sync.

5) Client-side data types are not guaranteed to be the same as their Server-side

equivalents. The reason is that in client-side database systems such as SQLite the set of

supported data types will, in general, be very different from the MS SQL Server

equivalent. SyncStudio will attempt to find the closest match for each field that is being

synchronized, though. For example, all the Integer data types in MS SQL Server will be

mapped to the Integer data type in SQLite, regardless of the length of the server-side

field; likewise, all the floating-point numeric data types in MS SQL Server will be mapped

into the SQLite Real data type, and all character strings in SQL Server will become TEXT

data types in SQLite.

6) Special data types like geometry and geography can be synchronized. However,

timestamp cannot be synchronized as this is a non-editable field data type. You will not

be able to select any data type that cannot be supported. In any event, most of the

client-side databases such as SQLite simply have no equivalents for these special data

types other than storing them as binary objects (blobs).

7) Views cannot be synchronized.

8) Triggers and Stored Procedures are not synchronized.

Page 15 of 64

9) Foreign keys are fully supported. During database provisioning please be sure to set

the sync order for each table so that a child is not inserted before a parent.

10) A table cannot have a field that contains the name of the table. For example, a table

called “TYPE” cannot have any fields that begin with TYPE. The same thing applies for a

primary index that contains the name of the table. Sorry.

11) Table names, Field names and Index names cannot contain any of the following special

characters:

 ~ ! @ # $ % ^ & * () { } / ; ' " | \

Please note that some of these characters, $ for example, are perfectly valid in field

names for many database systems, such as MS SQL Server. However, they cannot be

used in table, index or field names that are intended for synchronization.

If you have used any of these characters in your database table schema or field names

and you need the table synchronized then you really have only two choices: if you have

control over the database structures you can always rename the table and/or fields to

use only legal characters; otherwise, for tables you could create a “parallel” table with a

valid table name, use a trigger to keep the two tables aligned and synchronize only the

new table.

You could also do something similar with invalid field names, where you create an

additional field in the same table but with a valid name and then use a trigger to copy

any changes from the invalid field to the new valid one.

Regardless of the strategy used you need to keep in mind that this is a hard limitation,

as invalid table and/or field names will cause your synchronization to fail. The

SyncStudio user interface will try to prevent you from selecting tables and/or fields with

invalid names whenever possible.

Page 16 of 64

12) Tables can be marked as Upload-Only, Download-Only or Bi-Directional (both Upload and

Download). The default is Bi-Directional, where any changes in the server will be sent to

the client and vice versa.

Upload-Only tables are meant to be used to collect data from the clients but not to send

or replicate any server data back to the client device.

Download-Only tables are meant for data that should never be changed at the client.

Some examples of common download-only tables are tax rates and tables with codes,

which the client needs to use but should not be able to change.

For all the obvious reasons your client-side code should always be written so as to not

allow any changes to download-only tables, to avoid confusion and the possibility of

data-dependent errors that are very hard to reproduce and debug.

13) Any time that you make changes to either the database structure or to the tables and

fields that need to be synchronized you must re-provision your database. There is a

complete section of database provisioning later in this document. Please read it

carefully, as the provisioning process has the potential for affecting both your

application and your users.

14) For every Synchronization Project SyncStudio creates a binary file with a .dbp extension

that contains all the information about your project configuration. The configuration file

is not human-readable; please do not attempt to make any changes to this file outside

of SyncStudio—otherwise your project will fail to load.

Page 17 of 64

Database Provisioning

SyncStudio requires that you “Provision” your database for sync operations. Provisioning adds a

tracking table to each table that is selected for synchronization, plus several triggers and stored

procedures.

Foreign Keys

If you selected any Database Articles that have Foreign Key’s, then before Provisioning the

database you MUST review and confirm the Sync Order of the tables. Click the “Sync Order”

button to open the control.

Page 18 of 64

You must carefully arrange the tables in the correct sync order to not cause a foreign key

violation during the sync process. If none of your tables have foreign keys, then the sync order

does not matter. However, if you have foreign keys then, for example, a new child record

cannot be inserted before the corresponding parent record is inserted first. Be sure you

understand the foreign key relationships between selected tables so you can properly set the

sync order. Click on a table then use the arrow keys to move it up or down into the order you

want.

When done click OK.

Use Tracking Triggers

In SyncStudio version 3 we introduced the option to automatically create change tracking

triggers on the client-side database. To maintain backward compatibility, we do not enable this

feature by default. For new SyncStudio projects we strongly recommend enabling this feature.

With this feature on the client database will be fully cable of detecting inserts, edits and deletes

without the developer needing to make any codes changes.

Process Timeout (seconds)

The provisioning of a database with lots of tables or where tables contain considerable amounts

of data will naturally take longer than when the database is small with little data. To avoid the

possibility of an SQL time due to inactivity you have the option of increasing the time out

interval. Sixty seconds are usually good for most cases but if more is needed you can increase

it here before trying to provision the database.

Page 19 of 64

The Database Provisioning Process

When you are ready to provision your database as per the selections made under Database

Articles click the Provision button.

WARNING: PLEASE DO NOT ATTEMPT TO USE AN SQL DATABASE THAT HAS PREVIOUSLY BEEN

PROVISIONED OR USED WITH STANDARD MICROSOFT SYNC FRAMEWORK. ONLY USE DATABASES

WITH SYNCSTUDIO THAT ARE CLEAR OF THIRD PARTY SYNC RELATED OBJECTS OR ARE NEW

AND HAVE NOT ALREADY BEEN ALTERED BY OTHER SYNCHRONIZATION TOOLS. IT IS LIKELY

THAT SYNCSTUDIO PROVISIONING WILL FAIL IF ATTEMPTED WITH DB ALREADY PROVISIONED BY

SOME OTHER TOOL.

SyncStudio will start processing and making the needed changes to your database. When it’s

done, it will display the following.

Provisioning prepares your database for synchronization by adding change-tracking tables and

the metadata that is required to manage the synchronization process in the form of metadata

tables, triggers and stored procedures. After provisioning, every table that is selected for

synchronization will have a companion tracking table, plus a set of triggers and stored

procedures. SyncStudio has a Database Provisioning feature to simplify the provisioning and

de-provisioning of your database, but as a developer you need to be very much aware of the

issues involved in re-provisioning databases, particularly large ones. This topic is covered in full

this section and you should read it carefully because it may have an impact on your application

and your user experience.

The basic concepts that you need to consider are that whenever you make changes to your data

structures you will have to first de-provision the database, make whatever changes are needed

and then re-provision your database; that de-provisioning and re-provisioning a database is an

all-or-nothing process, and that you cannot re-provision a database that is already

provisioned—it needs to be de-provisioned first.

You can provision and de-provision a database as often as you need to. However, this is not

something that you want to do without understanding the process or consequences. When a

database is deprovision it loses any memory of the state of the clients and all tracking table

information. That means that when the clients sync after a de-provision/re-provision cycle

SyncStudio must resend all the records again, as it does not know which records need to be

synced. Essentially, de-provisioning and re-provisioning a database is something that should

only be done when there are changes to the database structure or filters of tables that are

being sync’d via SyncStudio.

Page 20 of 64

Tip: some developers add several “reserved” fields and even whole tables to their database

structures on the first release of their product, set them to synchronize but leave these fields

blank or null. So long as you do not change the field names, lengths or data types you can then

use them later for enhancements, new features, etc. without having to de-provision and re-

provision the database.

If you change the schema of your database (i.e., if you add, change or delete tables, fields or

indexes) you must de-provision and re-provision the server, but only if the changes apply to

tables that are being synchronized. Adding, changing or deleting tables that are not being

synchronized (and which you do not need to synchronize) does not require a de-provision/re-

provision cycle.

If you change the tables and/or fields that are being synchronized, you have to de-provision

and re-provision the database—even if the database structure itself has not changed—and you

must re-generate and re-deploy the server-side code. Failure to follow this rule will almost

certainly break the synchronization process, as the database structures will no longer

correspond to the server-side code. Your data should still be protected because of the full

transaction support in SyncStudio, but you are running the risk that some synchronization

sessions may not fail even if the database structures have changed, because of data-dependent

factors. To repeat: if you change the database structure or if you change which fields and/or

tables are being synchronized you have to de-provision, re-provision, re-generate and re-deploy

the server-side code.

When you deprovision, change the structure of your database and then re-provision the

database using the new database schema you do not have to manually make the same

modifications on the client side. SyncStudio has an Automated Schema Synchronization feature

that will take care of this for you, providing that the changes that you made to the database

schema do not break the synchronization. There is a more complete description of which

changes will break synchronization in the next section below.

We are aware that some developers do try to manually change the table structures and

synchronization-related stored procedures on the server side to avoid having to de-provision a

database for minor changes. In our opinion this is such a dangerous process and so prone to

failure that we cannot recommend it. SyncStudio has been designed with a Database Schema

Synchronization feature precisely to simplify the task of upgrading your database to support

new fields and features in your code. Please note that support for problems in a database in

which the synchronization data structures and/or stored procedures have been manually

altered will be a billable service.

Automatic Schema Synchronization

SyncStudio has a fully automated Database Schema Synchronization feature. Any changes that

you make to the server’s database structure will be propagated to the clients the next time that

they synchronize their devices.

If the changes that you make to your database structures do not “break” the synchronization

process—more on this below—the changes will be handled transparently. However, please do

keep in mind that any changes to the server database schema will always require a de-

provisioning and re-provisioning cycle, which will force your clients to perform a full download.

Page 21 of 64

Avoiding changes that break synchronization

Most changes to your database structure will not “break” the synchronization process. The

following kinds of changes do not break the synchronization and will be handled transparently

by the SyncStudio Schema Synchronization process:

1) Add a new table or set an existing table to be synchronized that was not being synced

before. In this case the client will first create the new table structure and then download

the appropriate records from the server as defined by your data filtering configuration

for the table.

2) Delete an existing table or change a table that is being synchronized so that it will no

longer be synced. The client-side software will automatically delete the client-side table.

Please note that in this case any “dirty” or new records that might exist at the client will

be lost (silently, the user will not receive any messages). This is necessary because when

you drop a table from the sync there will no longer be any code on the server side to

receive the changed records from the client.

3) Add a new field to a table. This change will not break the synchronization process

providing that you either allow nulls or that you define the default value for this field.

4) Increasing the length of a string-type field.

5) Delete an existing field from a table or stop synchronizing an existing field. In this case

the client-side table will be modified to omit the field. As with table deletions, whatever

data existed in the deleted field will be discarded at the client, including data that had

changed at the client but had not yet been sent to the server. The change will be done

silently—the user will not be informed or receive any messages.

6) Add a new Index to a table. The client-side code will add the new index.

7) Delete an existing index from a table. The client-side code will delete the index.

Some changes will “break” the automated Database Schema synchronization process, however,

and you should always try to avoid making these changes:

1) Changing the data type of a field. Changing from a string to a numeric, for example, will

likely break the synchronization process. SyncStudio does not attempt to perform

automatic type coercion. If you absolutely need to change the data type of a field the

best solution is to first have all your clients sync, then stop the service, de-provision the

database, create a new field with the correct data type and convert the data yourself, re-

provision the database, re-create the server-side code, re-deploy and restart the service

and finally have all the clients sync again so that they get the updated data structures

and the converted data. While this might seem somewhat involved it is still much less

effort than having to manually convert all the clients, as would be the case with a

standard Microsoft Sync Service solution.

Page 22 of 64

2) Reducing the length of a string-type field at the server to the point where it is too small

for data that is already at the client. This will fail at the server-side on a future sync if

the record that has the long string is marked as “dirty”. Please note the following: In

SQLite, there is no concept of a fixed-length string/text field; string fields can hold

string data of any length, regardless of the nominal “size” of the field. Server-side

databases like MS SQL Server, however, do have the concept of fixed-length string fields.

If you use fixed-length strings at the server side—perhaps the most common database

design ever! —your client-side application is responsible for making sure that the user

does not enter strings that are too long for the server-side field.

3) Changing the name of a field may cause problems or not, but it is data dependent. In

this situation, the client-side software will interpret the change not as a rename but as

the deletion of the old field plus the addition of a field with the new name—in other

words, you will lose the contents of the old field at the client, and the new field values

will be nulls, which is probably not what you wanted when you renamed the field. If you

really need to change a field name the best alternative is to first have all your clients

sync, then stop the service, de-provision the database, add a new field to the table with

the desired name, copy the old values to the new field yourself, delete the old field on

the server, re-provision the database, re-generate the server code so that it will

understand the new field name, re-deploy the service to IIS and then have the clients re-

sync.

4) Adding a new field to a table or choosing to synchronize an existing field that was not

synced before will fail if the field does not allow null values and does not provide a

server-side default.

Stranded Client Records

Whenever a SyncStudio client performs a synchronization the very first thing that happens is

that we have the client compare the data structures at the server with those already at the

client. If the data structures are different the client will attempt to synchronize the client-side

data structures (the Database Schema) with those of the server. If your changes are such that

they do not “break” the synchronization, then the following sequence of events will take place

under a transaction:

1) The client will download the new data structures from the server.

2) The client will “save” the contents of any existing tables that have changed—tables that

have no changes are not affected—but only if the tables have either “dirty” deleted or

new records. Tables that have changed at the server but where the client does not have

any un-synced “dirty” records do not need to be saved.

3) The client will then create the new tables, fields and indexes for the tables that have

changed to replicate the same structures received from the server.

4) The client will then attempt to insert the “saved” records into the new (empty) data

structures. As we mentioned before, this will only work if your changes are such that

Page 23 of 64

they do not “break” the synchronization. If this process works then the client side ends

up with the old data in the new structures, including the “dirty” flags. If the process fails,

the client will attempt to roll back the transaction and abort the sync. Please note that

not all client-side databases have full support for rolling back changes to data

structures, so this feature works on a “best efforts” basis. Again, the best way to avoid

this type of issue is to make sure that your database schema changes do not break the

synchronization.

5) If everything works and the Schema Synchronization phase completes without errors the

client will then upload the changed records to the server and commit the transaction. If

the upload fails, either because of a communication error or because of a server-side

error, the client will attempt to roll-back the transaction and the entire sync will fail.

6) If the upload completes without errors, then the client performs a complete download of

all the server records, still under a new transaction—this is required because in order to

change your database schema you first had to de-provision the server, which causes it to

“forget” all knowledge about the state of the clients.

7) Finally, if the download is completed without errors the client commits the transaction;

otherwise client side changes caused by the server are rolled-back and the sync fails.

Reading through the description above you will understand that the possibility exists of having

“stranded” records at the client, which explains the title of this section. Stranded records can

happen if you make changes to your database structures that break the synchronization

process, and where there are either new records or “dirty” records at the client—still in the old

data structures—but where the automated Schema Synchronization process is unable to convert

the old records to the new data structures.

Preventing Schema Synchronization Errors

For all the obvious reasons, you should always try to architect your schema changes so as to

not break the synchronization process. Aside from following the rules above, a really good way

to ensure that the changes will work is to do the following:

1) Create a copy of the table that is being modified in your development database. For this

example, we will assume you have a table called “TEST” that has three fixed-length

character fields: FIELD_1, FIELD_2 and FIELD_3. In your server, you will create a new

empty table called “TEST_2” with the same structure plus a new field called “FIELD_4”.

Make sure that FIELD_4 either accepts null values or it has a default value defined.

2) Run the following SQL Statement in your server:

 INSERT INTO TEST_2 (FIELD_1, FIELD_2, FIELD_3) SELECT FIELD_1, FIELD_2, FIELD_3

FROM TEST

From the statement above you will see that we are inserting the old records into the new

structure. The fields in the INSERT part of the statement need to be only those that are present

in both the old and the new data structures; the fields of the SELECT part of the statement

follow the same rule. If this statement works in your development server you should be

Page 24 of 64

reasonably safe in making the schema change, providing that there are no data-dependent

errors that happen at run-time because of issues such as different field lengths between the two

data structures, for example you will have to analyze yourself.

You can test deleting a field, for example, with a statement like:

INSERT INTO TEST_2 (FIELD_1, FIELD_3) SELECT FIELD_1, FIELD_3 FROM TEST

Notice that we left FIELD_2 out. This simulates deleting FIELD_2 from the new table structure.

Page 25 of 64

Some Notes about SQLite

If your client-side database is SQLite (such as in Android, iOS, Win Phone and even Universal

Windows Platform clients) please remember that the data typing rules of SQLite are very

different from those of MS SQL Server. SQLite has a very interesting feature that lets you store

any type of data into any field, regardless of the “nominal” field type. Additionally, SQLite has

no concept of “fixed” field length for strings and will do automatic modification of data types as

required.

Finally, one more warning about SQLite: this database program has several HARD LIMITS that

need to be respected:

1) The maximum number of columns in a table is 2,000. This one is not too bad, as

anyone that has more than 2,000 columns in a table should have their head examined.

However, if you are considering using a table with many fields, let’s say 1,000 or so,

please keep this in mind:

“There are places in the SQLite code generator that use algorithms that are O(N²) where

N is the number of columns […] so with a large number of columns SQLite will run very

slowly” (see http://www.SQlite.org/limits.html)

2) The maximum length of a record is 1 Megabyte. This is a bad one, because there are

many situations in which you have text/blob type fields where the user supplies some

unknown, but possibly large, amount of text or binary data—e.g., images—which will

make the SyncStudio client fail if the 1 Megabyte limit is exceeded. Please note that this

has nothing to do with us, it is a limitation of SQLite that we have zero control over. The

bottom line is that you must prevent any situation in which a single row can be longer

than 1 Megabyte yourself.

3) SQLite does not have direct support for date data types (for more information please see

http://www.SQlite.org/datatype3.html). In SQLite dates, can be stored in one of three

ways: as ISO8601 strings ("YYYY-MM-DD HH:MM: SS.SSS"), as Real numbers or as

Integers. SyncStudio treats dates as strings, which is the most general representation

and allows the largest range of date values—both real and integer representation of

dates support only a restricted range. However, if you are going to manipulate or create

date values in your client side code you need to ensure that your date strings contain a

valid date value in the ISO8601 format (YYYY-MM-DD HH:MM: SS.SSS) to avoid triggering

synchronization errors (for more information on the ISO8601 standard please see

http://en.wikipedia.org/wiki/ISO_8601). Please note that SyncStudio automatically

performs the conversion from the MS SQL Server date data types into the ISO8601 string

format and back—you simply use date data types at the server and the ISO8601 string

date data types at the client.

4) SQLite does not have a Boolean data type. In SQLite, Boolean values are stored as

integers, with zero being false and one being true. In SyncStudio we automatically

convert the MS SQL Server bit data type to an integer (0=false, 1=true) and back into a

bit value for the upload.

5) SQLite does not have a data type equivalent for the MS SQL Server uniqueidentifier data

type (a unique id). In SyncStudio uniqueidentifier fields are stored as text.

6) A few special MS SQL Server data types are not supported for synchronization. This

limitation is generally imposed by the Microsoft Sync Framework rather than SQlite.

http://www.sqlite.org/datatype3.html
http://en.wikipedia.org/wiki/ISO_8601

Page 26 of 64

Examples of data types that cannot be synchronized are: geography, geometry,

hierarchyid. In any event, these data types have no direct equivalent in SQLite.

7) MS SQL Server and other database systems have a rich set of numeric data types for

both integer and real numbers. SQLite has only one Integer data type and one Real data

type. On the client side SyncStudio will convert all the MS SQL Server integer data types

to SQLite Integers and all the data types that can have decimals to SQLite Reals.

However, please keep in mind that in SQL Server the various Integer and Real data types

have different lengths, and therefore different ranges of valid values. In SQLite Integer

fields are stored as 8-byte Long Integers and Real values are 8-byte IEEE floating point

numbers. There is simply nothing in SQLite that will stop you from storing a 10-digit

number, for example, into a field that is defined as a one-byte “tinyint” data type on the

server side, which accepts only integer values from 0 to 255. When you try to upload

this 10-digit value SQL Server will most definitely stop you, though—and the sync will

fail. The same thing applies with all the other numeric data types—you are responsible

for keeping track of the minimum and maximum allowed values for every field on the

client side.

Tip: developers that have control over their server-side data structures might decide to

minimize this issue by using only bigint (8-byte Integers) and either the real or float data

types at the server. Developers that do not have control over their server-side data

structures will spend long days coding the necessary data validation and very long and

anxious nights debugging obscure—and entirely avoidable—data-dependent sync

problems.

8) SQLite allows you to store any data type into any field, regardless of the “nominal” data

type of the field, and will perform automatic type conversions as required. The

automatic type conversion rules in SQLite have been very, very carefully crafted so as to

maximize the uncertainty regarding the final data type stored in the database (for the

details of this coding feat please refer to http://www.SQlite.org/datatype3.html). When

the Client Database Schema is created SyncStudio will make a valiant and spirited effort

to automatically translate from the MS SQL Server data types to the corresponding

equivalents in SQLite. So long as you choose to behave sensibly and observe the same

data typing rules as MS SQL Server in your own client-side code the sync will work just

fine. However, if your client-side code uses this feature of SQLite to store mixed data

types in the same column you will for sure break the synchronization, and in rather

interesting and hard to debug ways at that. Your choice.

http://www.sqlite.org/datatype3.html

Page 27 of 64

General Design Considerations

SyncStudio acts as a bridge between your server database system and the database on the

Mobile Clients. This means that we need to abide by all the constraints of every component in

the sequence, and therefore that we can support only the set of features that will not “break”

anything in this chain. When designing your server-side database you need to keep the

following limitations in mind:

1) SyncStudio will create the client-side database schema for you and will attempt to keep

the client database schema aligned with your server. The good news here is that our

Automatic Schema Synchronization feature should save you a very substantial amount of

maintenance work, that you do not have to invest any time or coding effort in creating

and updating the database schema on the clients and that most schema changes will be

transparent to the user. The bad news is that any changes that you make to the client-

side schema will be overridden whenever the server schema changes, and that the

client-side synchronization code depends on several custom synchronization tables that

are kept by the client—which you should never touch or change in any way.

Whenever we create or update the database schema on the client, we will create all the

corresponding table structures and indexes; triggers and stored procedures are not

replicated, however. Additionally, due to the lack of support for the ALTER TABLE

statement in SQLite whenever a table structure changes, we are forced to drop the old

table and re-create the new table structure from scratch. This means that any client-side

triggers, constraints and/or indexes that you create manually will be deleted when the

old table is deleted. Bottom line: do not make any custom changes to the client-side

database schema; in SyncStudio the idea is that you control the structure of the client-

side database by making changes to the server-side and setting them to synchronize.

2) There are substantial differences between the MS SQL Server data types and the SQLite

data types. As a rule, if you have control over the server-side database design it is

always best to stick with a sub-set of data types that is common to both. Otherwise,

your client-side code must be aware of the server-side data types on a field-by-field

basis. Bottom line: if possible, try to use only the data types that are defined in SQLite.

3) The Microsoft Sync Framework imposes several limitations on what characters can be

used as part of a table name or a field name. Some table and field names that are

perfectly valid in both MS SQL Server and SQLite are not valid for synchronization. This

is a limitation imposed by the design of the MS Sync Framework and we do not have any

way to override it or compensate for it. Your server-side database structure needs to

comply with the MS Sync Framework field naming rules or SyncStudio will not be able to

operate on your database. Bottom line: make sure that your field names are valid Sync

Framework Identifiers.

Page 28 of 64

Code Generation

Once you have defined your project configuration and provisioned your database server for

synchronization you are ready to have SyncStudio generate all the server-side code for you.

Click on the Code Generation button on the left-hand menu to bring up the Sync Server Code

Generation screen shown below, and then click on the button labeled “Generate Server Code”:

When you do this, you will receive a message that alerts you to the fact that the new server-side

code will override—and replace—any existing code. If you want to save the previous version of

the code, you should copy the contents of the project’s build directory somewhere else before

creating the new code.

Page 29 of 64

Note: SyncStudio produces compiled code, not source. After you create the server-side code the

build directory in your project folder will contain the following directories and files:

\bin

\bin\SyncStudioService.dll

\bin\Microsoft.Synchronization.Services.dll

DataScopeSyncService.svc

DefaultScopeSyncService.svc

Web.config

All the files above are required for deployment. Please do not make manual changes to any of

these files (except for the Web.config database connection, as described below) or your

synchronization project will not work correctly.

The project creates a default Web.config file. The connection string to the database is inside

this Web.config under the tag “SyncStudioCn”.

 <add name="SyncStudioCn" connectionString="Server=YOURSERVER\YOURDBNAME;

 Database=YOURDBNAME; Integrated Security=SSPI; Connection Timeout=30;"

 providerName="System.Data.SqlClient"/>

To deploy the new synchronization server code to IIS please click on the “Sync Server

Deployment” tab on the left side of the SyncStudio.

Page 30 of 64

Sync Server Deployment

SyncStudio has an automated deployment feature to move the code and configure your Web

Service code to run under IIS. This utility is there for your convenience—you could always copy

the contents of the Build directory in your project to a virtual directory that you create in IIS

yourself and manually configure IIS.

Notes:

1) SyncStudio needs to run in an Application Pool that is configured to use the .NET

Framework Version 4.x.

2) SyncStudio requires IIS 7 and up to run.

3) Deployment is the very last stage in the process. Before you deploy to IIS you must have

created a project configuration, provisioned your server and generated the server-side

code.

Page 31 of 64

Notes:

1) SyncStudio needs to run in an Application Pool that is configured to use the .NET

Framework Version 4.x. We create one called “SyncStudioAppPool” and configure as

needed.

2) SyncStudio requires IIS 7 and up to run.

3) The project will be deployed to the Default Web Site (unless you change it).

4) The project will be deployed to a directory in wwwroot.

Page 32 of 64

User Maintenance

SyncStudio uses the SQL authentication mechanism. Users you set up via SyncStudio are also

created as SQL Server users. Every user (i.e., client device) in your system must have a valid

SQL user id and password with permissions for the target SQL database for it to be able to

synchronize.

You can configure any number of users via the SMC user maintenance screen, but the system

will not operate if there are more users than you are licensed for (Important: if your license

allows you to have only 10 users and you configure 11 users the sync will stop working for all

the users, not just the 11
th

 one). Demo Licenses (what you get when you download the

SyncStudio demo) allow only 3 users—please do not configure more than 3 users for a demo

license or you will receive an error message during the synchronization test.

At a minimum, a user must have a unique User ID and a non-empty password.

First, click on the tab called “User Maintenance” on the left then click on the button and fill

in the form.

Page 33 of 64

The Upload Batch Size determines how many records the remote client will send (new, modified)

in a single batch. 100 is the default but the value can be higher or lower depending on your

application and what device you are using. 10 is the minimum.

Your users cannot share User Ids. Every user in SyncStudio must have a different User Id,

otherwise they will interfere with each other, and they will not be able to synchronize.

If two of your users accidentally use the same User Id (and Password) they will interfere with

each other and will not be able to synchronize. If this happens the only recourse is to have both

of them delete the local database (you will lose any pending transactions), enter the appropriate

User Id and Password for each one in their respective devices and re-synchronize, which will

require a full download.

Please note that this should never happen during normal usage because every user should not

only have a unique User Id, but also their secret password, which they should never give to

anyone else.

Additionally, sharing User Ids is a violation of the SyncStudio licensing terms, since we license

this product on a per-user basis. In other words, it is not allowed (or possible) to buy a 5-user

license and then have 100 users by giving everyone the same User Id and password—it will fail,

your users will lose any transactions that have been entered but not uploaded to the server and

will be forced to re-synchronize with a full download.

Page 34 of 64

Reports

SyncStudio has the following reports:

1) Sync Project Definition. This report prints all the tables, fields and indexes that are being

synchronized.

2) User List. A list of all your users.

3) Sync Log. A Complete listing of all the synchronization sessions for all your users.

Page 35 of 64

Sync Project Definition

User List

Page 36 of 64

Sync Log

Filtering Data

One of the most common requirements for database synchronization systems is to be able to

filter the data rows that will be sent to the client device based on some type of criteria. For

example, in a sales application a salesperson may only need to receive the customers located in

some territory or area.

There are two ways to filter data in SyncStudio: Simple Filtering and Advanced Filtering.

Simple Filtering

Simple Filtering is useful when a row is intended to be given to one or more users, based on the

user group. In this case, all you need to do is the following:

1) In the SyncStudio UI select the table, click the “Add/Edit Filter” button. A form will

display with a pulldown control and an edit box. Open the pulldown and select any field

from the table that you want to use to filter against.

Automatically upon selection a default WHERE clause will appear in the text box area. If

you are ok with this standard filter condition, just click “OK”.

Page 37 of 64

2) To put this new filter logic into effect during sync you will need to re-provision the

database, re-generate the code and re-deploy the project to IIS.

3) Now when the device syncs it will pass a filter value to the server which is stored in the

variable @Filter and passed used to filter against the selected field. Any rows that have

a matching value in this field will be sent to the user.

Simple filtering can be very useful for things like subscription-based data synchronization, in

which every group of user needs to get a completely different set of records based on a filter

value (like group membership). It also can be used in scenarios where records can/should only

be assigned to one user.

Advanced Filtering

However, if your requirement is for filtering to be done based on some more complicated set of

criteria, such as a user being in some combination of region, territory, etc. then you should

consider using Advanced Filtering instead, as described in the next section below.

An example is shown in the screenshot below. Here a table called CUSTLIST is being set-up for

filtering.

Page 38 of 64

Using Advanced Filtering means that you set up your own custom filtering criteria by editing in

the text box the default WHERE clause.

([side].FILTERCODE in (select filtercode from filtersettings where USERNAME = @filter)) OR EXISTS(select filtercode from

filtersettings where (USERNAME = @filter AND filtercode = 'ALL'))

Where [side].FILTERCODE is selected field in your table in which you can store any arbitrary

value, a territory or group, for example. Please note that the fields in the table that you are

synchronizing need to be prefixed with the [side] qualifier as shown above.

The sample filter WHERE clause above will filter based on the contents of the FILTERCODE field

and the associations made in the FILTERSETTINGS table between the USERID and FILTERCODE

fields.

For example, assume that the FILTERSETTINGS table has the following rows:

Row #1: USERGROUP=GROUP1, FILTERCODE=SALES

Row #2: USERGROUP=GROUP2, FILTERCODE=SALES

Row #3: USERGROUP=GROUP3, FILTERCODE=OPSUS

Row #4: USERGROUP=GROUP4, FILTERCODE=OPSEU

Row #5: USERGROUP=GROUP5, FILTERCODE=ALL

Page 39 of 64

In this case the code snippet above will send any records with field FILTERCODE=SALES to

USERGROUP1 and USERGROUP2, records with FILTERCODE=OPSUS will be sent to USERGROUP3,

records with FILTERCODE=OPSEU will be sent to USERGROUP4 and finally USERGROUP5 is

marked as “ALL” so it will get all the records.

The Standard SyncStudio Android Client

SyncStudio comes with two sample Android Clients. One is created using a development tool

called Basic4Android (B4A) and the other is created in straight Java via the Android Studio

environment. Source code for both sample clients is included in your installation package.

Our sample clients provide a front end to the SyncStudio JAVA .JAR library that is the client side

of our solution and the one that actually handles all interaction and synchronization with the

server. You may use our sample client applications to learn how to use our sync client libraries.

Please keep in mind when using our sample Clients that they cannot access private SQLite

databases. In Android, a private database can only be accessed by the application that created

it. In practical terms this means that if you decide to use our sample Android Client you will

have to keep your SQLite database in a public folder (like on an SD card) where our client can

access it.

If you would rather have a private database, then you must incorporate our .JAR into your

application.

When you start the SyncStudio B4A sample Client you will see a screen like the following:

Click the Android Menu button and select the “Profiles” menu option. This will show a list of the

available sync server profiles (which will be initially empty). The next figure shows a sample

Profile List with a few profiles created:

Page 40 of 64

If you click on any of the profiles you will see the details of that particular profile, as shown in

the next figure:

From the profile edit menu you can save any changes that you make to the profile, delete the

profile and you also have the option of deleting the local copy of the server data.

Page 41 of 64

To create a new profile, click on “Profiles” in the main menu, and then on “New Profile” in the

profile list, fill-in the profile information and then click on the Android menu button and select

“Save Profile”.

Any time you make changes to the profile you need to click the Android Menu button to either

save the changes (Save Profile) or discard them (Cancel Edit). From this menu, you can also

delete the profile (Delete Profile) or delete the local copy of the data being synchronized.

Once you have at least one profile you can synchronize with the server. Please return to the

main form and click the “Sync Now” button. When you do that, you will be asked to confirm the

sync, and then you will see a screen like the following:

Page 42 of 64

In the sample synchronization session above, we can see that the synchronization app first

detected that this was a new profile and performed a Schema Sync to download the database

structures from the server and then synchronized 237 records (that is all that was in the sample

database).

Depending on the structure of your database (the number of tables and fields that you want to

synchronize) it might take anywhere from a few seconds to several minutes to download the

database structures from the server and create the corresponding SQLite data structures at the

client. Please be patient!

For a new profile (and whenever you delete the local database) the client will be forced to

perform a complete download of all the records in the server (filtered if needed). For large

databases, this might take some time. After the first sync, though, only new/changed/deleted

records will be sent to the server, so a “normal” sync (which does not require a schema

synchronization) should take just a few seconds.

The sync speed will depend on many factors, including the number of fields per table, the

speed of the connection and the speed and load on your server, but it is usually in the

thousands of records per minute.

Notes:

1) You need to have at least one profile to be able to synchronize. However, you can have

as many profiles as you want. Please make sure that each profile targets a different

database.

2) On the Profile screen please enter either the URL of your server or the IP address in the

Server Address field provided. Then enter the name of the Synchronization project in the

next field, labeled “Sync Project Name.” Do not use any spaces or special characters as

Page 43 of 64

part of the project name, only a-z, A-Z, 0-9 and the Underscore (_) character are allowed.

3) If you are using a port other than 80 or 443 (http/https) you can specify the Server Port

in the field provided. If you are using http (Port 80) you should leave the port field

blank, as the client will automatically default to Port 80. If you are using Port 443 (https)

you can leave the port field blank also, and instead use the checkbox provided at the

bottom of the profile screen. For all other ports, you should enter the custom port

number in the space provided. Please remember to configure your server’s firewall to let

these ports through.

4) The Sync Server machine needs to be “visible” from the device. You can test easily this

by simply entering the address of the server (followed by a forward slash and the name

of your project) in a browser window; if the browser can “see” the server then the sync

client should be able to access it as well. Depending on the details of your system you

might have to either disable the Windows Firewall or configure it to let the device

through.

5) The Delete Local database option applies to the database that contains a copy of the

server data, not to the database that contains the synchronization profiles. When you

delete the local database all the synchronization logs for that database are deleted as

well (the reason is that the logs reside in the database that is being deleted). If you need

to preserve the sync logs you should make a copy of the log table somewhere else in

your device.

6) Please take some care with the delete option! If your user has created new entries that

have not been sent to the server (i.e., are not synchronized) then a Delete Local DB will

lose these entries permanently.

7) The user passwords for the Sync Server are stored in encrypted form inside the Profile

database; the SyncStudio client does the encryption and decryption for you. If you need

to manipulate these passwords outside of the SyncStudio Client you can “clone” the

encryption code that comes with the Client source or replace this with your own code.

8) If you run into synchronization trouble with a device, because of a corrupted database,

for example, you can use the Delete Local DB option to force the SyncStudio client to re-

create the database structures and download a complete copy of the server data. This

should be your option of last resort, as you will lose any records that have not been

synced back to the server, but sometimes it is the only way to clear a database

corruption issue.

9) As explained elsewhere in this document, the USER GROUP field is used for filtering. The

short version of filtering is that a user will get all the data records that match the

contents of their USER GROUP field, plus all the records of tables that are not filtered. If

you are using filtering, then your users will need to know their USER GROUP in order for

them to get the correct records.

Page 44 of 64

10) Do not use Auto-Increment Fields in your database! This might be the #1 issue that

people have when they try to synchronize databases. An auto-Increment field is an

Integer field that will basically add 1 to the field contents. When this is done at the

server (under a lock) the database will take care of preventing two users from creating

the same number. However, when it is done with the client (for a new record) the client-

side database does not have any way of knowing what numbers have been used already.

When two users try to create and then synchronize a new record with the same key you

will have an error.

Page 45 of 64

The Device Log

The SyncStudio Standard Android Client maintains a complete log of all the synchronization

sessions. The synchronization log is kept as part of the database being synchronized (i.e., the

log for a particular database is inside a table in the local database). Please note that this means

that if you delete the local copy of the database, you will also be deleting the synchronization

log for that database.

If you click the Logs tab after selecting a profile you will see a list of all the synchronization logs

collected by this device for that profile, as shown in the following figure:

Clicking on any of the log entries will show the details for that synchronization session, as

shown in the next figure.

The Session Id is a unique identifier, and it corresponds to the Session Id that is kept at the

server. If you have synchronization issues with some device, or if you want to know how many

records were synchronized and in which tables you can compare this log against the one kept

by the SyncStudio synchronization server to help diagnose issues.

Page 46 of 64

You can delete the local copy of the database by clicking on the “Delete Local DB” menu button.

What this does is to erase the data that was downloaded from the server (not the profile itself).

Page 47 of 64

The Settings option on the Main Menu allows you to enable or disable the detailed session log,

and to save the detailed session log to a file. The detailed session log can assist a developer in

diagnosing communication or synchronization issues; it is not useful for an end-use and it is

not enabled by default.

The detailed session log is saved to a text file on the device in the same directory where the

database being synchronized is located. If you are having difficulties with a particular device,

you can ask your user to enable the detailed log and to check the “Save Session Log to Text

File” options below. Then you can have them try a sync session and send/e-mail you the sync

log text file, which will contain any errors that were found during synchronization.

Page 48 of 64

Sample Code – SyncStudio Android Open Source synchronization apps

SyncStudio Sync Client (Basic4Android Project)

If you use the Basic4Android RAD Tool for your development you can open the source to our

sample client application located in the following folder:

C:\Program Files (x86)\SyncStudio\DevSDK\Android\Basic4Android

This is the published version of our stand-alone sync client. Reviewing it should give you a

good understanding of how to use the B4A version of our synchronization class library.

SyncStudio Sync Client (JAVA/Eclipse Project)

If you use Android Studio you can open a sample client application located in the following

folder:

C:\Program Files (x86)\SyncStudio\DevSDK\Android\Java\Sample Client Source

This is a simple straight forward example of a stand-alone sync application. This project has a

very basic interface and is not intended to be a finished app you can give to a user. However,

reviewing it should give you a good understanding of how to use the JAVA version of our

synchronization class library.

Page 49 of 64

Class Library API Reference – Basic4Android and Java

SyncStudio has an API in the form of two class libraries (.JAR). One .JAR works with the

Basic4Android (B4A - http://www.basic4ppc.com/) RAD development environment and another

.JAR is for standard Java (i.e., a native Java app created using Android Studio environment and

running on an Android device). These Class Libraries are intended for developers that want to

have complete control over the synchronization process, including the ability to provide their

own user interface.

The Basic4Android .JAR API

The following pages contain information and sample code for using the SyncStudio class

library for Basic4Android. If you are using our class library for JAVA, please skip this

section.

To use SyncStudio with your Basic4Android app you need to do the following:

1) First, copy the SyncStudio.SQLite.B4A.jar and SyncStudio.SQLite.B4A.xml files (located in

the C:\Program Files (x86)\SyncStudio\DevSDK\Android\Basic4Android\Library folder)

to your additional libraries folder in B4A.

2) Add a reference to the SyncStudio Synchronization API Jar. In your project select the

“Libs” tab; if you have copied the .jar and .xml files to the additional libraries directory

you should see dbSyncStudioB4A as one of the additional libraries (note: you might

need to refresh the list of additional libraries by right-clicking the libraries area and

selecting “Refresh”, or by exiting the B4A development environment and re-starting it).

Once you see the SyncStudio library in the list, check it so that it will be included in your

B4A project.

3) Create a Synchronization Object in the Process Globals section of your Main activity (or

any other activity of your choice). The Synchronization Object needs to be a Process

Global object. For example:

 Sub Process_Globals

 … (other statements)

 'Declare the SyncStudio Synchronization Object:

 Dim SyncObj As dbSyncStudioClient

 … (other statements)

 End Sub

http://www.basic4ppc.com/

Page 50 of 64

4) In the section of your code where you want to call the synchronization add a call like

following example to initialize the Synchronization Object. Please note that you cannot

use the synchronization object until it has been initialized:

 Main.SyncObj.Initialize _

 (PROFILE_NAME, _

 SERVER_URL, _

 USER_ID, _

 PASSWORD, _

 USER_GROUP, _

 USE_SSL, _

 DB_FOLDER, _

 DB_NAME)

 Where:

 PROFILE_NAME String that contains the name of

the synchronization profile being used.

This field is for your reference only and

can be left blank.

 SERVER_URL This is the URL of the Synchronization server

 where you deployed your project

 USER_ID This is the ID of the user that is being

 Synchronized. Needs to be one of the User Id’s

 that you have configured in your database.

 PASSWORD This is the password of the user that is being

 synchronized. Needs to be the same as the

 password in your database.

 USER_GROUP The group of the user being synchronized.

 This field is only needed if you are doing

 Filtering. Otherwise leave blank.

 USE_SSL Send “Y” to force the use of https or “N”

 if your server is not configured for SSL.

 DB_FOLDER Path (folder only) where the database resides

 Note: The folder name MUST end with “/”

 DB_NAME Name of the Database file (without the folder)

 including the extension (i.e, testdata.db).

Page 51 of 64

5) To start the synchronization call:

 SyncObj.startSync

 Or if your object is declared in the Main Activity and you are calling it from some other

activity:

Main.SyncObj.startSync

6) The SyncStudio Synchronization Object will raise events as it performs the

synchronization. All the events have the same format, so you need only one event

handler, which must have the signature in the example below:

Sub SyncStudio(eventName As String, param1 As String, _

param2 As String, param3 As String, param4 As String, _ param5 As

String, param6 As String, param7 As String)

 Where:

param1 Number of Schema Records

param2 Number of Records Uploaded

param3 Number of Records Downloaded

param4 Downloaded Records Inserted

param5 Downloaded Records Updated

param6 Downloaded Records Deleted

 param7 Blank or Error Code

Page 52 of 64

Synchronization Example

The following code snippet shows how to call the synchronization object from a menu handler.

Please note that this code is assuming that somewhere in your app you have form controls for

each of the parameters and that they contain data. Please refer to our sample B4A project for a

more complete code example.

The first section of the code makes sure that the folder path is formatted correctly:

Sub mnuSync_Click

 'Makes Sure that we have the right format for the path (folder) and the db name:

 Dim Suffix As String

 Suffix = "/"

 Dim TMP_DB_FOLDER As String

 TMP_DB_FOLDER = Main.EditProfile_DB_FOLDER

 If TMP_DB_FOLDER.StartsWith (Suffix) = False Then

 TMP_DB_FOLDER = Suffix & TMP_DB_FOLDER

 End If

 If TMP_DB_FOLDER.SubString2(TMP_DB_FOLDER.Length-1,TMP_DB_FOLDER.Length) <> Suffix

Then

 TMP_DB_FOLDER = TMP_DB_FOLDER & Suffix

 End If

 Dim TMP_DB_NAME As String

 TMP_DB_NAME = Main.EditProfile_DB_NAME

 TMP_DB_NAME = TMP_DB_NAME.Replace(Suffix,"")

 Main.SyncObj.Initialize _

 (Main.EditProfile_PROFILE_NAME, _

 Main.EditProfile_SERVER_URL, _

 Main.EditProfile_USER_ID, _

 Main.EditProfile_PASSWORD.Trim, _

 Main.EditProfile_USER_GROUP, _

 Main.EditProfile_USE_SSL, _

 "N", _

 TMP_DB_FOLDER, _

 TMP_DB_NAME)

 SyncInProgress = True

 Main.SyncObj.startSync

End Sub

Page 53 of 64

Handling Synchronization Events

To handle the events properly you need to look first at param7, which will contain either a

blank or an error code. If param7 is blank then we simply have a regular synchronization status

update telling you how many records have been synchronized so far. If param7 is not blank,

then there is a synchronization error.

'Sync Event Handler

Sub dbsyncstudio(eventName As String, param1 As String, param2 As String, param3 As String,

param4 As String, param5 As String, param6 As String, param7 As String)

 If eventName.ToUpperCase = "SYNC FINISHED" Then

 SyncInProgress = False

 End If

 Label_SYNC_ACTIVITY.Text = eventName

 If param1 <> "*" Then

 Label_SYNC_SCHEMA_RECS.Text = "Schema Records: " & param1

 End If

 If param2 <> "*" Then

 Label_SYNC_UPLOAD_RECS.Text = "Records Uploaded: " & param2

 End If If param3 <> "*" Then

 Label_SYNC_DOWNLOAD_RECS.Text = "Records Downloaded: " & param3

 End If

 If param4 <> "*" Then

 Label_SYNC_DOWNLOAD_RECS_INSERTED.Text = " Inserted: " & param4

 End If

 If param5 <> "*" Then

 Label_SYNC_DOWNLOAD_RECS_UPDATED.Text = " Updated: " & param5

 End If

 If param6 <> "*" Then

 Label_SYNC_DOWNLOAD_RECS_DELETED.Text = " Deleted: " & param6

 End If

 If param7 <> "" Then

 Msgbox(param7, "Synchronization Failed")

 Log("Sync Error: " & param7)

 SyncInProgress = False

 Activity.Finish

 End If

End Sub

Page 54 of 64

The Profile Database

The SyncStudio Sample Android Client keeps a separate database with the server profiles. A

Server Profile includes all the information that is needed to contact a synchronization server,

including the profile name, the URL of the server, the User Id and Password for that server, the

User Group (for filtering), Y/N flag that indicates the use of SSL, plus the folder where the

database resides and the name (including extension but no folder) of the database file. The

following code is used to create the Profile Database:

'Create a new SyncStudio Profile Database

Sub CreateDb

 Try

 SQLobj.Initialize(DbFolder, DbName, True)

 Dim fldMap As Map

 fldMap.Initialize

 fldMap.Put("PROFILE_ID", DBUtils.DB_INTEGER)

 fldMap.Put("PROFILE_NAME", DBUtils.DB_TEXT)

 fldMap.Put("SERVER_URL", DBUtils.DB_TEXT)

 fldMap.Put("USER_ID", DBUtils.DB_TEXT)

 fldMap.Put("PASSWORD", DBUtils.DB_TEXT)

 fldMap.Put("USER_GROUP", DBUtils.DB_TEXT)

 fldMap.Put("USE_SSL", DBUtils.DB_TEXT)

 fldMap.Put("DB_FOLDER", DBUtils.DB_TEXT)

 fldMap.Put("DB_NAME", DBUtils.DB_TEXT)

 DBUtils.CreateTable(SQLobj, "PROFILES", fldMap, "PROFILE_ID")

 Return True

 Catch

 Return False

 End Try

End Sub

Page 55 of 64

Getting the Database Location

In Android, we need to know where the database is located. This function checks the Internal

Storage first. If the database is not located there, it then checks for a writable SD card and if

one is present, then searches the SD card. This function returns either the directory where the

database is located or a blank string if no database is found.

'Returns the location (directory) of the database

'(SD Card or Internal Storage)

'Returns a blank string if the DB was not found.

Sub GetDBLocation(FileName As String) As String

 Dim TargetDir As String

 'Check to see if we have the file in the internal storage first:

 If File.Exists(File.DirInternal , FileName) = True Then

 'Yes, the DB is located in the internal storage

 Return File.DirInternal

 Else

 'No, see if we have a writable SD Card

 If File.ExternalWritable = True Then

 'Yes. See if the DB file is there:

 If File.Exists(File.DirDefaultExternal , FileName) = _

True Then

 'Yes, the DB is in the SD Card

'in the default directory

 'for the app

' <storage card>/Android/data/<package>/files/

 Return File.DirDefaultExternal

 Else

 'The DB is not there at all (or it has been moved)

 Return ""

 End If

 Else

 'No. This means we either do not

'have a database (1st time app is loaded)

 'or that the DB is in the SD Card but

'the SD Card is not accessible.

 Return ""

 End If

 End If

End Sub

Page 56 of 64

The JAVA .JAR API

The following pages contain information and sample code for using the SyncStudio class

library for JAVA. If you are using our class library for B4A please skip this section.

To use SyncStudio with your JAVA app you need to do the following:

1) First, if you want, copy the SyncStudio.SQLite.Java.jar file (located in the C:\Program Files

(x86)\SyncStudio\Android\Java\Library\) to your preferred location for third party .JAR

files.

2) Add our JAR to your project...

You can add our .JAR in Android Sutio by right clicking on the Project --> Build Path -->

Configure Build Path. Under Libraries tab, click Add External JARs and go find our Jar in

whatever path you stored it.

3) Add an import

import com.dbsyncstudio.client.SyncClient

4) Declare object variable inside the java client class

private SyncClient syncClient;

Please note that you can open our sample sync client project in Android Studio and study how

we use the .JAR. When you do you will likely have to update the build paths for the various JARs

so that they will match your system.

Page 57 of 64

The important thing to keep in mind when using our .JAR is that when called it must be passed

several parameters. Where the values for these come from are up to you but we recommend

they not be hard coded in a production app. You can hard code for testing purposes but in a

live app consider using the concept of a PROFILE. A PROFILE would be created in the app via a

configuration screen and thereby you could enter values for these params and store them in a

local database. We don’t recommend storing the PROFILE data in the same DB that the app will

create and sync via SyncStudio as if the DB is deleted then you also lose the profile settings.

Later in this section is sample code for a PROFILE database.

ProfileName String that contains the name of

the synchronization profile being used.

This field is for your reference only and

can be left blank.

 Server_URL This is the URL of the Synchronization server

 where you deployed your project

 User_Id This is the ID of the user that is being

 Synchronized. Needs to be one of the User Id’s

 that you have configured in your database.

 Password This is the password of the user that is being

 synchronized. Needs to be the same as the

 password in your database.

 User_Group The group of the user being synchronized.

 This field is only needed if you are doing

 Filtering. Otherwise leave blank.

 Use_SSL Send “Y” to force the use of https or “N”

 if your server is not configured for SSL.

 "N" This is default param that must always be sent.

 Db_Folder Path (folder only) where the database resides

 Note: The folder name MUST end with “/”

 Db_Name Name of the Database file (without the folder)

 including the extension (i.e, testdata.db).

Page 58 of 64

Using the Sync Object

syncClient = new SyncClient();

syncClient.Initialize(ProfileName, Server_URL, User_Id, Password, User_Group, Use_SSL, "N",

Db_Folder, Db_Name);

syncClient.startSync();

Start Sync - Detailed Code Section

public void startProgress(View view) {

 // Disable the SYnc button

 if (haveProfileSelected == false) {

 Toast.makeText(DbSyncStudioJavaActivity.ctx, "No Profile Selected!",

Toast.LENGTH_LONG).show();

 return;

 }

 buttonStartSync.setEnabled(false);

 try {

 syncClient = new SyncClient();

 Log.d("","Sync Client Started");

 syncTick = 0;

 syncStatusText.setText("Sync Started");

 syncSchemaEntries.setText("");

 syncUploadEntries.setText("");

 syncDownloadEntries.setText("");

 syncDownloadInserts.setText("");

 syncDownloadUpdates.setText("");

 syncDownloadDeletes.setText("");

 syncErrorFlag.setText("");

 syncCounter = "";

 String suffix = "/";

 // If the folder does not begin with / add the forward slash

 if (Db_Folder.startsWith(suffix, 0) == false) {

 Db_Folder = suffix + Db_Folder;

 }

 // If the folder does not end with / add the forward slash

 if (Db_Folder.endsWith(suffix) == false) {

 Db_Folder = Db_Folder + suffix;

 }

 String Server_URL = MakeURL(Server_Address, Server_Project, Server_Port,

Use_SSL);

 syncClient.Initialize(ProfileName, Server_URL, User_Id, Password, User_Group,

Use_SSL, "N", Db_Folder, Db_Name);

 syncClient.startSync();

 } catch (Exception e1) {

Page 59 of 64

 buttonStartSync.setEnabled(true);

 syncStatusText.setText("Sync Failed - Cannot Initialize Sync");

 return;

 }

 // synchronization status monitor thread

 Runnable runnable = new Runnable() {

 @Override

 public void run() {

 try {

 exitSyncMonitor = false;

 syncTick = 0;

 while (exitSyncMonitor == false) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 }

 syncTick = syncTick + 1;

 if (syncClient.syncCounter.contentEquals("")==false) {

 if (syncClient.syncCounter.contentEquals(syncCounter)==false) {

 syncTick = 0;

 }

 }

 if (syncTick > maxSyncTicks) {

 // Timeout

 syncStatusText.setText("Sync Failed - Timeout");

 buttonStartSync.setEnabled(true);

 exitSyncMonitor = true;

 } else {

 // Get the stats

 handler.post(new Runnable() {

 @Override

 public void run() {

 syncStatusText.setText(syncClient.syncStatusMsg);

 if (!syncClient.syncSchemaEntries.contentEquals("*")) {

 syncSchemaEntries.setText("Schema Records: " +

syncClient.syncSchemaEntries);

 }

 if (!syncClient.syncUploadEntries.contentEquals("*")) {

 syncUploadEntries.setText("Records Uploaded: " +

syncClient.syncUploadEntries);

 }

 if (!syncClient.syncDownloadEntries.contentEquals("*"))

{

 syncDownloadEntries.setText("Records

Downloaded: " + syncClient.syncDownloadEntries);

 }

 if (!syncClient.syncDownloadInserts.contentEquals("*"))

{

 syncDownloadInserts.setText("Records Inserted: "

+ syncClient.syncDownloadInserts);

 }

Page 60 of 64

 if

(!syncClient.syncDownloadUpdates.contentEquals("*")) {

 syncDownloadUpdates.setText("Records Updated: "

+ syncClient.syncDownloadUpdates);

 }

 if (!syncClient.syncDownloadDeletes.contentEquals("*"))

{

 syncDownloadDeletes.setText("Records Deleted: "

+ syncClient.syncDownloadDeletes);

 }

 syncErrorFlag.setText(syncClient.syncErrorFlag);

 if ((!syncClient.syncErrorFlag.contentEquals("")) ||

(syncClient.syncStatusMsg.contentEquals("Sync Finished")))

 {

 exitSyncMonitor = true;

 buttonStartSync.setEnabled(true);

 }

 }

 });

 }

 }

 buttonStartSync.setEnabled(true);

 } catch (Exception e) {

 syncStatusText.setText("Sync Failed");

 exitSyncMonitor = true;

 buttonStartSync.setEnabled(true);

 }

 }

 };

 new Thread(runnable).start();

 }

Page 61 of 64

Creating Profile Database

public class DbSyncStudioOpenHelper extends SQliteOpenHelper {

 private static final String DATABASE_NAME = "syncstudio.db";

 private static final int DATABASE_VERSION = 1;

 // Database creation sql statements

 protected static final String DATABASE_CREATE_PROFILES =

 "create table profiles " +

 "(_id integer primary key, " +

 "profile_name text not null, " +

 "server_address text not null, " +

 "server_project text not null, " +

 "server_port text not null, " +

 "user_id text not null, " +

 "password text not null, " +

 "user_group text not null, " +

 "use_ssl text not null, " +

 "is_selected_profile text not null, " +

 "db_folder text not null, " +

 "db_name text not null);";

 public DbSyncStudioOpenHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 // Method is called during creation of the database

 @Override

 public void onCreate(SQliteDatabase database) {

 database.execSQL(DATABASE_CREATE_PROFILES);

 Toast.makeText(DbSyncStudioJavaActivity.ctx, "Profile Database Created",

Toast.LENGTH_LONG).show();

 }

 // Method is called during an update of the database, e.g. if you increase

 // the database version

 @Override

 public void onUpgrade(SQliteDatabase database, int oldVersion,

 int newVersion) {

 database.execSQL("DROP TABLE IF EXISTS profiles");

 onCreate(database);

 }

}

Page 62 of 64

The WinForms Windows .DLL Sync Client Library

How to use SyncStudio.MSSQL.Win.dll

Subfolder C:\Program Files (x86)\SyncStudio\DevSDK\Windows\MSSQL\Libraries contains the

following files:

- SyncStudio.MSSQL.Win.dll class library

- Newtonsoft.Json.dll (a third party class library required by SyncStudio.MSSQL.Win.dll). It is part

of the Json.Net nuget found in Visual Studio. It may be already part of your visual studio project

(if you use it). Otherwise it can be installed by searching for Json.Net in the Visual Studio’s

Nuget Manager or directly by going to the link below (current version 13.0.3):

 https://www.nuget.org/packages/Newtonsoft.Json/

Regardless of how you get it, Newtonsoft.Json.dll must be added to the output folder of your

project, along with SyncStudio.MSSQL.Win.dll

Subfolder C:\Program Files (x86)\SyncStudio\DevSDK\Windows\MSSQL\Sample Client Source

contains the C# source code for a sample client project that shows how to use the

SyncStudio.MSSQL.Win.dll. The sample project can be used as a standalone sync client.

To use SyncStudio.MSSQL.Win.dll you must add it as a reference to your visual studio project,

plus the Newtonsoft.Json.dll library must be added to your application folder.

The SQL database MUST be created by SyncStudio.MSSQL.Win.dll as part of the synchronization

process. Its structure will be defined in the SyncStudio project (on the server side) and some

internal fields will be added to help track changes on the client side. Once the database gets

created and the synchronization process finished, the connection to the DB is closed and your

application can use the DB any way it wants.

Each table defined in the server to be synchronized to the client will get several extra fields:

- isNew: a trigger will set it to 1 for each new record inserted

- isDirty: a trigger will set it to 1 if the record gets updated

- isDeleted: a trigger will set it to 1 when the record gets deleted

Using these fields properly allows the proper tracking of client records to update the server

database.

NOTE:

In the SyncStudio SMC “Database Provisioning” form there is a check box “Use Tracking

Triggers”. Checking this will allow SyncStudio to automatically add tracking triggers to the

client-side DB when it is created via the sync process. These tracking triggers will automatically

fire and update the appropriate field (isNew, isDirty, isDeleted) when your client application

inserts, updates or deletes records. If you do not check this box then your application will need

to handle updating these fields as needed or SyncStudio will have no knowledge of what to sync

to the server.

Changes on the server side are tracked automatically in SQL because of the Database

Provisioning feature of SyncStudio.

Page 63 of 64

Once you add SyncStudio.MSSQL.Win.dll to your project, you have access to the following

methods\properties\events:

Methods:

SyncClient(string serverURL1, string projectName1, string userID1, string

 password1, string userGroup1, bool useSSL1, string dbServer1, string dbName1,

 string dbFolder1, string deviceID, string postSyncProc, SyncType syncType)

This is the constructor with the following parameters:

* serverURL1: IP address or fully qualified domain name of the SQL Server

* projectName1: name of the SyncStudio project to synchronize with

* userID1: username for the sync process (needs sql server access and also be included in the

syncstudio project)

* password1: password for the previous username

* userGroup1: synchronization filter defined in the syncstudio project (default = “”)

* useSSL1: server requires https connection

* dbServer1: local SQL server name (it can be LocalDB, SQL Express, etc.)

* dbName1: local SQL database name

* dbFolder1: folder where the SQL database files will be stored

* deviceID: a unique serial number or device identification value if needed (optional)

* postSyncProc: any stored procedure name to be executed on the server AFTER the sync is

done (optional)

* syncType: SyncAll, UploadOnly or DownloadOnly

SyncClient(string serverURL1, string projectName1, string userID1, string

 password1, string userGroup1, bool useSSL1, string dbServer1, string dbName1,

 string dbFolder1, string deviceID, string postSyncProc, SyncType syncType, string version1,

 string callingApp1)

This is an overload of the constructor with two extra parameters

* version1: client calling app version

* callingApp1: client calling app name

Both parameters will be sent to the server as part of the sync

- StartSync()

This method starts the synchronization process. It can be used synchronously or

asynchronously.

Events:

- EventHandler SyncStatusNotification

You must register to this event to get constant notifications about the status of the sync

process.

Page 64 of 64

Properties:

- bool syncFinished: whether the sync process finished or not

- string syncStatus: notification messages about the sync (errors or otherwise)

- int uploadInserts

- int uploadUpdates

- int uploadDeletes

- int uploadEntries

- int downloadInserts

- int downloadUpdates

- int downloadDeletes

- int downloadEntries

- int schemaRecords: database-structure-related records

- string VERSION1

